Friday, June 23, 2017

Merkava with ears? It's ALWACS!

In the past months a number of photographs has been posted online, which shows some of the older, upgraded Merkava main battle tanks (MBTs) featuring so called "ears". In different forums people have speculated about the purpose of the oddly shaped turret add-ons, suggesting that these might be part of a 360° close proximity surveillance system or radars for detecting the launch of rocket propelled grenades or anti-tank missiles.

Operational Merkava tanks with "ears"
In fact the upgraded Merkava II and Merkava III tanks are fitted with the advanced laser warning and countermeasure system (ALWACS), which is made by the local manufacturer Elbit Systems. The ALWACS is a softkill active protection system (APS) capable of defeating anti-tank guided missiles (ATGMs) and other sorts of laser-guided ammunition, by distracting them or by hiding the tank using a multi-spectral smoke screen. ALWACS has also been proposed for adoption on the troubled Arjun Mk. 2 tank upgrade for the Indian Army; however it was not adopted into the upgrade package in favor of other components such as heavy explosive reactive armor (ERA).

The ALWACS softkill system has been proposed for adoption on the Arjun tank
Incoming threats are indirecly detected by the Elbit-made E-LAWS laser warning sensors. In case of the Merkava III tanks, these are usually mounted atop a mast on the turret; however there are also some cases where the E-LAWS modules are bolted to the turret sides. These laser warning sensors are also used on other vehicles inlcuding the TAM 2C upgrade for the Argentine Army and the British Ajax recon vehicle. If a laser source triggers the warning system, the direction of the source is calculated and the countermeasures are being engaged. The ALWACS softkill system includes two different types of defensive measures: the VIRCMs (vehicle infrared counter-measures) and multi-spectral smoke grenades.
Each VIRCM module consists of four smaller infrared (IR) jammers, which are set at different angles and cover more than 90° of azimuth; the coverage in elevation is probably limited to about 45°, maybe even less. The IR jammers can confuse missiles that are utilizing IR signales for semi-automatic guidance along the line of sight (SACLOS). The upgraded Merkava tanks feature two VIRCMs (one on the left and on of the right side of the turret rear bustle), covering a large portion of the sides and rear.  However the Merkava tanks fitted with the ALWACS softkill APS don't feature any additional smoke grenade launchers; it is not known if the smoke grenades used by the Merkava tanks are capable of blocking the most common IR and laser wavelengths.

The ports of the VIRCMs are open; also note the mast with E-LAWS on the center of the turret roof
The advanced laser warning and countermeasure system is essentially a more modern equivalent to the Soviet-made Shtora electro-optical countermeasure system and other simple softkill systems like the Ukranian Varta, which utilize laser warners to activate IR jammers and/or to launch smoke grenades. Similiar systems also include the LEDS-50 laser warning and the LEDS-100 softkill system from SAAB Electronics, the US AN/VLQ 6 missile countermeasure device (MCD), which is an infrared jammer not connected to a laser warning system, and Rheinmetall's ROSY_L. ROSY_L consists of multiple smoke grenade launchers in a 40 mm calibre, which are controlled by a manual control unit or by a computer control unit. The computer can be connected to sensor systems such as laser warners and accoustic sensors belonging to the company's SAS product suite in order to create a softkill system known as ROSY_L ISS (integrated sensor suite).

MUSS features optical sensors aswell as rotatable launchers and jammers.
The ALWACS is however not as advanced as the multifunctional self-protection system (MUSS) from German manufacturer Hensoldt, which has been fielded on the Puma infantry fighting vehicle (IFV) and is being tested by QinetiQ for a possible adoption on the British Challenger 2 main battle tank and other armored vehicles as part of the Medusa program. 
Aside of laser warners, the MUSS softkill system features optical UV sensors for threat detection and tracking, it therefore can detect and engage missiles that are not fired from a launcher with laser-rangefinder. Furthermore the IR jammer and multi-spectral smoke grenade launchers from MUSS are rotatable, allowing the system to protect a vehicle along the full 360° azimuth - systems like Shtora, Varta, the MCD and ALWACS are usually not capable to do so.

Wednesday, June 14, 2017

MBT upgrade news

A number of countries has presented or ordered upgrades for main battle tanks (MBTs) in the past months. Unfortunately low activity on this blog has resulted on some of the more recent events not being properly covered. This article is trying to recapitulate a few new developments and news reports that couldn't make it into a full-sized article. While this approach will increase the coverage of "recent" events, the quality of the post might not be up to typical standards. In three countries low-cost upgrades of the T-72 were presented, while three other news a related to the Leopard 2 tank. The Argentine Army is also looking to improve more TAM tanks.

The T-72BME is fitted with Kontakt-1 ERA
The T-72BME is a new upgrade developed by the 140th repair plant of the Belarussian Army, which was first presented at the MILEX 2017 defence exposition. The upgrade is focused on improving the electronics mainly - in Soviet/Russian nomenclature, the original T-72 variants didn't even feature a proper fire control system (just a "ballistic calculator") - but it also includes a few improvments to armor protection and mobility. While called T-72BME, the MBT is apparently not based on the T-72B version, but is rather a T-72A as identifiable by it's turret. The main change in regards to protection is an altered layout for the Kontakt-1 explosive reactive armor (ERA) compared to the old Soviet layout. The T-72B1 originally feature a single ERA row mounted flat to the turret, whereas the T-72BME now uses multiple tiles arranged into a wedge shape - similar to the Kontakt-1 ERA layout on the T-80BV and the T-72AV. The rear section of the turret and the rear section of the hull sides are fitted with slat armor, which should provide protection against older types of RPGs. The slat armor on the turret rear section is used as mounting point for Kontakt-1 ERA.

The turret shape reveals this tank to be an upgraded T-72A
The T-72BME also features a more powerful engine, now providing up to 840 horsepowers output instead of only 780 hp. This is an increase of only 60 horsepower; it is not known if the Belarussian tank designers opted for uprating the existing engine or adopting a new one. There are quite a few different sub-versions of the V-84 that provide 840 horsepowers.
The upgraded MBT from Belarus is fitted with  new LED headlights and a Barret-2082 radio system from the Perth-based Australian manufacturer Barret Communications. The gunner's sight is replaced with the ESSA-72U from the Belarussian manufacturer Peleng. This sight is commonly including a French-designed Thales Catherine-FC thermal imager, providing three different magnification stages - x3, x12 and x24, although the latter is understood to be digital zoom only. The respective fields of view are 9° x 6.75°, 3° x 2.25° and 1.12° x 1.5° (in case of the electronic zoom stage). The original ESSA-72 had no independent dual-axis stabilization, however the improved ESSA-72U might feature it. The thermal imager works at a wavelength of 8 to 12 micrometres; overall the target detection range is claimed to be 8.6 to 11.7 kilometres, however this is not based on NATO-standardized testing.
Different versions of the ESSA sight have also been used on the Indian T-90S tank and the Russian T-90A. It is not known if the T-72BME will be introduced in the Belarussian Army, it seems rather unlikely given that a number of upgraded T-72B3 MBTs was recently handed over by Russia.

The M-84AS1 is a Serbian upgrade of the Yugoslavian M-84
In Serbia an upgraded version of the M-84 main battle tank was demonstrated to the public, although this supposedly won't be adopted by the Serbian Army in the near future. The M-84 is a Yugoslavian version of the T-72 tank that received several local improvments. The new model by Yugoimport has been described as the M-84AS1, a designation that is extremely similar to the M-84AS, an older M-84 upgrade including many Russian-made components of the T-90 tank, including the Shotra electro-optical protection system, Kontakt-5 ERA and a new fire control system. In many aspects the M-84AS is superior to the newer upgrade solution.

The side armor coverage is quite lackluster
While the previous model already had a digital fire control system, the upgrade to the M-84AS1 configuration introduces thermal imagers with the DNNS 2ATK sight and gives the tank commander the ability to override the gunner's input in case of emergency. The commander of the M-84AS1 is responsible for operating the new KIS M84 battlefield management system. A new radio from French manufacturer Thales is replacing the older Yugoslavian-made radios.
As common for most T-72 upgrades, the commander of the M-84AS1 is not provided with a proper turret-independent main optic, but has to rely on his fixed optics, cupola and the sights of the newly added remote weapon station (RWS). The RWS is armed with a 12.7 mm heavy machine gun (HMG) and contains three different optical devices, understood to be a thermal imaging system, a daysight camera and a laser rangefinder.

Like the T-72BME, the new tank upgrade makes use of Kontakt-1 ERA; however a locally improved type is used, which has been claimed to provide a very limited amount of additional protection against kinetic energy projectiles such as APFSDS ammunition. This new ERA covers the frontal aspect of the main battle tank. The rear section of the hull and turret are fitted with slat armor to resist older types of RPGs. Three large panels - probably containing six smaller ERA tiles each - are mounted at the frontal section of each hull flank. However the largest aspect of the hull sides is still only covered by rubber skirts, which are understood to be either a single or two approximately 25 mm thick rubber sheets with an internal steel wire mesh for increased rigidity. At most impact angles this won't be enough to reduce the armor penetration of even the oldest RPG-7 warheads in such a way, that the 80 mm steel plate forming of the M-84 hull sides would be able to stop the residual penetration. Therefore the decision to not extend the slat armor or ERA over the full hull sides appears to be questionable.
The tank is fitted with a radar and laser warning system connected to the smoke grenade launchers in order to work like a simple softkill system. Upon detection the smoke grenades can be used to disguise the tank's position with a multi-spectral smoke screen.

The T-72 Scarab uupgrade focuses on improving frontal protection by adding DYNA ERA
In the Czech Republic defence company Excalibur Army spol. s r.o. has presented a new upgrade solution for the T-72 tank, which has been nicknamed Scarab. The T-72 Scarab is mainly intended for export, although it was supposedly also offered to Czech Army according to The Scarab is focused on increasing the tank's protection level by adding a new ERA package to the turret and hull front. This is claimed to be a variant of the DYNA reactive armor, that is also used on the T-72M4Cz tank. It's installed in a new, sloped configuration and provides nearly seamless coverage in case of the turret. Some photos show the turret front with an additional layer bolted ontop of the ERA package, creating the illusion of a passive composite armor package being used instead. If the new armor is really based on the DYNA ERA, then it should not only protect against ATGMs and RPGs, but also affect the armor penetration of tandem shaped charge warheads and APFSDS ammunition.
The ERA covers the frontal arc and the some parts of the roof of the turret, aswell as the upper front plate (UFP) of the hull. The rear section of the turret is fitted with slat armor, the hull sides and rear however are not fitted with any type of applique or add-on armor.

The altered optics and the remotedly controlled machine gun
Aside of the new armor package, the T-72 Scarab provides only minor changes to the tank. A new RWS with a 12.7 mm NSVT machine gun is installed ontop of the turret roof, while the old V-46-6 engine is replaced with the 840 horsepower V-84 engine. The new powerpack has a maximum torque of 3,335 Nm when running at 1,350 rotations per minute (rpm). The engine can provide at most 2,100 rpm. The T-72 Scarab is claimed to reach a top-speed of up to 60 kilometres per hour on road and 45 kph in light terrain; this is (together with the unaltered T-72 suspension) not on par with other modern tanks. The fire control system received no major upgrade, but apparently the night vision sight was replaced by a passive system, leading to the removal of the Luna IR searchlight usually located at the side of the main gun. Overall this leads to a combat weight of 45 metric tons.

All these T-72 upgrades seem to have a rather small scope, being either limited by budget or avialable technology. Other tank upgrades developed in Europe and Asia seem to be much more capable. The T-72M4 Cz, currently in service with the Czech Army, might be the most capable T-72 upgrade operational within NATO, being fitted with anti-tandem HEAT ERA (the previously mentioned DYNA), the British Condor CV12 with 1,000 horsepowers output and the Italian TURMS-T fire control system with modern thermal imagers and turret independent optic for the tank commander. Despite some minor issues of the current model, the PT-91 of the Polish Army also seems to have a number of advantages over the T-72 Scarab, T-72BME and the M-84AS1. Both the T-72M4 Cz and the PT-91 are however much older tanks, which were accepted in general service more than a decade ago! A more modern T-72 upgrade like the PT-16 will enhance the tank's capabilities even further. There is not much wrong with the T-72 tank - at least when considering it's age - but poorly made, budget-oriented upgrades won't help much to boost its combat value or its reputation!
Even the Iranian Karrar tank seems to be superior to the three recent European upgrade solutions, despite Iran being a third world country based on various available definitions.

Leopard 2SG with COAPS sight (red arrow)
Singapore has decided to upgrade an unknown quantity of its Leopard 2SG tanks. The Leopard 2SG originally was a standard Leopard 2A4, formerly used by the German Army, fitted with parts of the Evolution armor package from the German company IBD Deisenroth Engineering. This package consists of various types of AMAP (Advanced Modular Armor Protection) composite armor, covering the frontal section, sides, roof and bottom of the tank, while slat armor is protecting the rear part of hull and turret. Singapore is understood to have bought only some parts of the Evolution package, giving the Leopard 2SG a distinctive shape with a flat-walled turret compared to the partially rounded/sloped turret front of tanks like the Leopard 2PL, Leopard 2RI and Rheinmetall's Leopard 2 ADT. At least one Leopard 2SG - maybe only a single prototype at the current point of time - was fitted with the Commander Open Architecture Panoramic Sight from Elbit Systems.

The COAPS is apparently marketed with a rather aggressive pricing, having being featured in tank upgrades with very limited budget such as the Arjun upgrade and the Argentinian TAM-2C modernization. It is dual-axis stabilized and includes a thermal imager operating at either a mid-wave infrared spectrum, an extended medium-wave spectrum or at a long-wave infrared spectrum - based on the size of the lens opening the Leopard 2SG apparently uses one of the former options - a HD daysight camera and an eyesafe laser rangefinder. The thermal imager is available with a detector resolution of either 640 by 512 or 1,024 by 768. This allows the tank commander to detect targets at ranges up to 10.5 kilometres, recognize them at a distance of up to 4.5 kilometres and identify the target at 2.2 kilometres range or closer. The daysight camera provides slightly better DRI (detect, recognize and identify) ranges of 11.5, 5.1 and 2.3 kilometres respectively. The laser ramgefinder has a range of 7,000 metres.

Leopard 2A5DK: To be upgraded in the near future
Other countries also have decided to upgrade their Leopard 2 tanks. Denmark has contracted Krauss-Maffei Wegmann (KMW) for a midlife update of 38 Leopard 2A5DK main battle tanks. Sixteen of the tanks will receive a full upgrade to a Leopard 2A7V-like configuration, including the new 120 mm L55A1 high-pressure smoothbore gun from Rheinmetall, aswell as a mine protection kit. The other 22 MBTs will receive a basic modification package with reduced scope. The midlife update is claimed to improve firepower, protection and mobility at the same time. It will likely include a better armor package (or interfaces require for mounting such) and a new Danish Army communication and battlefield management system. All tanks will be repaired and obsolete or worn components will be replaced. Denmark has chosen KMW as supplier due to the company having exclusive rights to several components used on the Leopard 2A5DK. A contract was made on the 21th December 2016, which had a value (excluding VAT) of €112.6 million.

Norwegian Leopard 2 upgrade plans
Norway is still waiting on a decision regarding the upgrade of the Leopard 2A4NO; the website of the Norwegian defence materiel agency (Forsvarsmateriell) claims that no contract has yet been made, although mentioning that a contract was planned for 2016. It appears that budget cuts have lead to a stalling of the Leopard 2 modernization. Norway also plans to acquire a number of bridge-laying vehicles based on an in-service Leopard 2 solution.
The upgrade is meant to improve the tank's protection while staying within the military loading (weight) class (MLC) 70, i.e. staying at a weight below 63.5 metric tons. This means the tank has to be lighter than the current Leopard 2A7 of  the German Army. The protection is increased using a modular approach and is planned to incorporate modules for enhanced ballistic protection at the frontal arc aswell as a thick applique belly plate for additional mine and IED protection. Foils from a Norwegian presentation include photographs of the Leopard 2A5/2A7 from Krauss-Maffei Wegmann, Rheinmetall's Advanced Technology Demonstrator (formerly known as Leopard 2 Revolution), aswell as the Leopard 2 Mid-Life Upgrade (MLU) from the Swiss company RUAG. These choices are similar to the upgrade options for the Chilean Leopard 2A4 tanks. While the former two Leopard 2 variants have been quite successful - e.g. Rheinmetall is currently delivering upgraded Leopard 2 tanks to Indonesia and Poland - the RUAG-made upgrade has yet to win any contracts. The Leopard 2 MLU makes use of RUAG's armor portfolio featuring the armor types SidePRO-ATR and SidePRO-RPG (the latter on the rear section only) for ballistic protection, while MinePRO and RoofPRO armor enhances the MBT's survivability against artillery submunitions and mine blasts.

Protector Super Lite on a Leopard 2A4 turret
The Norwegian Leopard 2 tanks are meant to retain the shorter barreled 120 mm L/44 smoothbore gun, but firepower will still be enhanced by the use of a digital fire control system (FCS) for ranges up to 5,000 metres, including third generation thermal imagers for improved DRI ranges. Electric turret drives improve the turret's rotational speed, while being less dangerous than a flammable, hydraulic system. A new computer system with data link added to the gun's breech for firing programmable air-burst ammunition (such as the 120 mm DM11 HE-ABM ammunition) is also part of the planned upgrade.
After being upgraded, the Leopard 2 tanks are prepared for the adoption of a remote weapon station (RWS). Most likely a solution from the local manufacturer Kongsberg will be chosen in a future upgrade; a Kongsberg-made Protector Super Lite RWS has been tested on a Leopard 2A4 some time ago in Norway.

The TAM 2IP prototype is fitted with Iron Wall armor from Israel
According to Jane's IHS, the Argentinian Army has finally decided to purchase a larger number of tank and other combat vehicle upgrades. The vehicles scheduled to be upgraded include 400 TAM (Tanque Argentino Mediano) tanks and derived variants (such as the VCTP infantry fighting vehicle and the VCA self-propelled howitzer) aswell as 400 US-made M113 armored personnel carriers (APCs). A further 100 M113 APCs might be purchased by the Argentine Army from the United States inventory; the US Army is replacing the M113 with the Armored Multi-Purpose Vehicle (AMPV), essentially a turret-less Bradley with enhanced IED protection. The TAM is by modern definition a light tank, although being de facto used as a main battle tank by the Argentine Army. It was developed in the 1970s by the German company Thyssen-Henschel and makes use of a modified Marder infantry fighting vehicle (IFV) hull fitted with a 105 mm gun turret.

The TAM 2C features advanced optics and electronics
Argentina has contracted the three Israeli companies Elbit Systems, Israel Military Industries (IMI) and Tadiran to develop an upgrade for the TAM tank beginning in 2008. Originally it was announced in 2015, that only 74 TAM tanks were to be upgraded to the new standard, costing $111 million USD. Under this program two different prototypes were developed, the TAM 2C focusing on upgraded firepower by adding Elbit System's COAPS sight for the commander, the Thermal Imaging Fire Control System (TIFCS) sight for the gunner and a laser warning receiver on a mast on the turret. An APU and new internal electronics are also part of the TAM 2C.
The other prototype has been designated TAM 2IP and features IMI's Iron Wall composite armor to improve protection against kinetic threats and IEDs. The TAM 2IP upgrade however doesn't include any changes to electronics and optics compared to the original TAM. The weight of the TAM with armor kit is increased to 31 metric tons.

The applique armor gives the TAM turret a wedge-shape
The exact content of the TAM modernization to be purchased by Argentina is not directly known. The most capable solution would be to adopt both the TAM 2C and TAM 2IP upgrades into each vehicle, although this could be too much weight for the existing running gear. Confirmed by Jane's IHS is an upgrade of the tank's ammo suite and electronics, which will enable the TAM to fire Israeli-designed gun-launched anti-tank guided missiles (GLATGM) through it's 105 mm rifled main gun. The LAHAT missile from IMI has a tandem shaped charge warhead against targets protected by ERA and has an effective range of above 5,000 metres; however Jane's mentions an effective range of 3.5 kilometres with the new guided munition made under licence in Argentina. The LAHAT missile has currently been withdrawn from Israeli service, but might be issued to frontline units in case of war.
An interesting fact is the number of 400 TAMs: this suggests that the previously mentioned 74 TAM tanks contracted in 2015 are included in the figures - otherwise it would be hard to explain the number of vehicles. It is known that the production number of TAM tanks and IFVs wasn't very large (and only 20 artillery systems were made), and a they are not in very good condition due to maintenance and repair issues; as Argentinian forum users have discovered on Google Earth image data, at least 19 TAMs have been scrapped or cannibalized for spare parts.

Friday, June 2, 2017

Austrian Pandur projects progression

The Austrian company GDELS Steyr, part of the General Dynamics European Land Systems (GDELS) division and formerly known as Steyr-Daimler-Puch Spezialfahrzeug GmbH (SSF), is responsible for developing a new vehicle of the Pandur family of wheeled vehicles (FoV). A few photos of an unspecified Pandur 6x6 variant, which apparently is a long wheelbase version of the Pandur II, were taken at a recent event in April. The fact that the vehicle was presented in a modern digital camouflage pattern has caused some funny commencts regarding the lack of style; however here these photos were the inspiration to take a very short look at the Pandur 1 projects in Austria and other countries. The fact that a Pandur II 6x6 is located at the Steyr plant might be a hint regarding the development of the Pandur EVO - it could be used as reference or as base model for the next iteration of the Pandur vehicle. The Pandur 1 is operated in different versions by the Austrian Army (the so called Bundesheer), the Belgian Army (as scout and ambulance vehicles), the Kuwaiti National Guard (some armed with 25 mm autocannons or 90 mm Cockerill medium calibre guns), the Slovenian Army (known as locally as "Valuk") and the US Army's Special Forces (fitted with applique armor, operated by the Delta Force and 75th Rangers in very small numbers).

The Pandur EVO has a long wheelbase and flat side walls. The rendering shows also a WS4 Panther RWS
The start of the Pandur EVO project was officially announced on the 21st of April 2017, after initial news reports appeared in December 2016 and January of 2017. It has been confirmed that 34 vehicles were ordered by the Bundesheer (Austrian Army) from GDELS Steyr and ESL Advanced Information Technology GmbH for a speculated price of €105 million. The Pandur EVO is a modernized version of the Pandur 1 armored personnel carrier (APC), but is a new development rather than an upgrade of the older vehicle version. Why the Pandur II, which is known to be superior to the existing Pandur 1 models and is available as a 6x6 and a 8x8 version, hasn't been chosen instead is currently not known, but the decision has been claimed to be related to logistics: the Pandur II is currently only operated by the Czech Army and the Protoguese Army - the Pandur EVO supposedly shares more components with the Pandur 1. It has been said that using the Pandur 1 as base of the EVO model will enable the Austria Army to reduce the costs for spare parts and maintenance. The delivery of the first prototype of the Pandur EVO is expected for 2018, so photos taken at a recent event at the GDELS Steyr factory might showcase the current state of development - although this is most definetly not the final Pandur EVO, due to lacking the rear ramp.

The two rear doors and the flat side walls with bolt-on armor can be used as reference for identifying the Pandur II
Another factor for choosing the Pandur EVO over the Pandur II might be the combat weight: the Pandur II 6x6 is only capable of supporting a maximum combat weight of 16.5 metric tons in case of the long wheelbase variant, while the short wheelbase model supports only 15.5 metric tons. The weight of the Pandur EVO, utilizing a new hull with a long wheelbase, has not been released yet. However the Pandur 1 chassis, in the process of being upgraded as part of the Pandur A2 improvment project, is meant to be boosted to support up to 16.8 metric tons - 3.3 tons more than the original Pandur 1. This requires modifications to the brakes, steering system and the suspension. The Pandur II 8x8 has a maximum combat weight of 24 metric tons in the standard configuration. 
The Pandur EVO is expected to be heavier than the upgraded Pandur A2. The additional weight is utilized for better protection - the demanded level of protection couldn't be achieved with modifying the original Pandur 1 design - and to increase transport capacity from 9 (crew of three + six dismounts) to eleven (crew of three + eight dismounts). This is why the Pandur EVO will feature a long wheelbase. In order to deal wtih the heavier vehicle, the engine has been replaced by a more powerful one, delivering about 27 hp per ton (implying at least a 450 hp engine) - rumors suggest a MTU engine (i.e. a version of the MTU 6V 199), although it might be fitted with a Cummins engine instead (as used on the Pandur 1 vehicles for Kuwait and the Pandur II production versions); the adoption of a new transmission (from Allison, Renk or ZF) is also expected. The Pandur EVO will feature a large rear ramp, rather than two separate rear doors. The seats will be mine-proof and thus not connected to the vehicle's floor plate. A NBC protection system and an anti-lock braking system will also be installed in the Pandur EVO.

 In US service the vehicle is known as Armored Ground Mobility System
There is also a politcal component to the decision to purchase the Pandur EVO: in the past the GDELS Steyr plant located in Vienna-Simmering had been manufacutring Pandur 1s for Kuwait;  apparently twenty out of seventy from the original order aswell as forty vehicles from the second order were manufactured in Austria, the others were assembled by AV Technology in the United States of America. The plant has finished its task, but no other follow-up order for Pandur 1s existed (the Pandur 2 is not being manufactured in Austria, it's only licence made in the Czech Republic and in Portugal), which meant that ordering the Pandur EVO is essentially for keeping 147 jobs working on the Pandur production - in fact the decision to order the Pandur EVO created jobs, because GDELS Steyr announced to increase it's workforce by about 10%. Previously the plant was downsized, at some time in the past it was even suggested to turn it into a pure repair and maintenance plant. Overall 179 Austrian companies take part in the development of the next evolution of the Austrian APC, leading to 70% of the contract value ending up in Austrian pockets.

Some of the Pandur 1 vehicles for the Kuwaiti National Guard are IFVs
The basic protection of the Pandur 1 is provided by it's all-welded steel hull, which features no proper provisions made for mine protection. The well-sloped frontal aspect is protected against 12.7 mm ammunition from distances greater than 100 metres and against 14.5 mm rounds fired from distances greater than a 1,000 metres. All-round protection is provided against 5.56 mm ammunition only. An initial upgrade to the Pandur A1 included new seats, that together with the relatively high ground clearance common in wheeled vehicles lead to a STANAG 4569 level 1 mine resistance (hand grenade or anti-personnel mine detonating below the vehicle).
The Pandur EVO's higher protection level is a result of bolt-on applique armor and a new mine protection kit; the relatively high level of required mine protection made it necessary to modify the hull. The exact supplier for the armor has not been disclosed, but the EVO variant might feature an armor kit consisting of RUAG's SidePRO-KE/IED armor for ballistic protection and a MinePRO system for the hull belly in order to resist mines. Both armor types, enabling the vehicle to survive different types of IEDs aswell, have been integrated in the next Pandur A2 upgrade. RUAG has been ordered by Austria and Belgium to develop an applique armor package based on it's existing protection technology in 2015. The total costs for this contract on the side of Austria were €13.57 million. The upgrade unfortunately requires completely stripping down the vehicle, integrating the armor and then adding all previously removed components again - this is the reason why only one prototype of the improved Pandur A2 has yet been finished, two further vehicles are scheduled for 2017. At the time of making the contract, the final delivery of the last uparmored Pandur A2 was expected in 2020; in the same timeframe the Pandur EVO production should be introduced in Austrian service.
In theory Austria might have chosen another contractor for the armor systems of the Pandur EVO - the Ulan for example is protected by MEXAS armor from RUAG's German competitor IBD Deisenroth, this however would nullify some of the logistic advantages gained by choosing the Pandur EVO rather than the Pandur II. The Pandur II of the Czech Army is fitted with ceramic armor from the Israeli manfacturer Rafael in order to reach STANAG 4569 level 4 ballistic protection (all round protection agianst 14.5 mm AP ammo). The mine protection plating of the EVO version is scheduled for testing in this month, i.e. June 2017.
If the weight of the Pandur EVO is somewhat close to the Pandur A2 after RUAG's armor upgrade, it shouldn't be able to reach a very high level of protection. Other 6x6 armored fighting vehicles (AFVs) such as the German Fuchs 1A8 reach a combat weight of up to 27 metric tons, which allows a high level of ballistic and mine protection, meeting the full NATO STANAG 4569 level 4 - this includes aside of all-around resistance to 14.5 mm AP rounds, also blast protection against 10 kilograms of TNT and roof armor to withstand artillery fragments from a distance of 30 metres. 

Pandur A2 firring it's M2 Browning heavy machine gun
The Pandur EVO is to be armed with a remotely controlled weapon station (RWS) of unknown type. The current Pandur A2 APCs are armed with a WS4 Panther weapon station from ESL Advanced Information Technology GmbH, a subsidairy of the Israeli manufacturer Elbit Systems. This RWS can be fitted with either a single 7.62 mm machine gun (MG), a single 12.7 mm heavy MG or a 40 mm automatic grenade launcher (AGL); due to not having an AGL in the inventory, the Austrian Army utilizes only the M2 Browning MG. Alternatively the WS4 Panther Duo, capable of holding a 7.62 mm machine gun and a 40 mm grenade launcher at the same time, might be fitted to the Pandur EVO, if an AGL is purchased at the same time. Both types of the Panther RWS feature an advanced set of optronics with a thermal imager, a laser rangefinder and a daylight camera.

This camouflage pattern might be useful for aval infantry, but it is not suited for Austria
The Austrian Army also bought seven used Pandurs (six APCs and a medical treatment vehicle) for an extremely low price of only half a million Euros from Belgium in 2016. Steyr GDELS is currently also working on an upgrade of the Ulan infantry fighting vehicle (IFV), which is focused around the adoption of an air-conditioning unit. This would enable the Ulan - internationally known as ASCOD (Austro-Spanish co-development) to be used for peace-keeping missions in the hot regions of Asia and Africa.

Thursday, June 1, 2017

IDF Carmel details emerge

A number of  3D graphics showing the Carmel next generation combat vehicle of the Israeli Defence Force, which sometimes is also called an advanced technology demonstrator, have been posted on the internet. The images come from a presentation held by the retired Brigadier General Didi Ben-Yoash, who formerly was the Chief Armored Corps Officer of the Israeli Defence Force (IDF). The presentation was part of the Second International Ground Warfare and Logistics Conference, held on 16th and 17th of May 2017 in the Latrun Armed Corps Memorial. Based on the fact that Didi Ben-Yoash is retied and describes this as a simulation of the Carmel, it appears extremely likely that the final vehicle might appear to be very different.

The simulated Carmel fighting vehicle
The Carmel is said to have a combat weight of 30 to 35 metric tons, which is about as much as the new wheeled 8x8 Eitan armored personell carrier (APC), currently being developed by MANTAK for the IDF. This weight level is considerably less than the weight of current heavy infantry fighting vehicles such as the German Puma at 43 metric tons and the Russian T-15 Armata at 48 metric tons. The Carmel is not an IFV, but what might be it's closest Western counterpart - the British Scout-SV Ajax (based on the ASCOD 2 chassis) - also is a few metric tons heavier than the expected weight of the Carmel. The closest Russian counterpart to the Carmel might be the BMPT/BMPT-72 Terminator fire support vehicle designed by the Russian company UVZ. The Carmel is claimed to be rather inexpensive compared to heavier vehicles like the Merkava 4 and Namer.

The potentially smaller internal volume of the Carmel's hull might be able to negate the lower weight, but this is not confirmed - the opposite might just as well be possible: the larger turret and main armament of the Carmel (compared to vehicles like the Puma and the T-15 Armata) could result in a lower level of ballistic protection. The frontal aspect of the vehicle is most likely protected against 25 mm or 30 mm APFSDS ammunition. Depending on the internal volume and protection level of the turret - an unmanned turret can be designed with an intentionally lower level of armor protection, if a mission kill is considered acceptable -  the vehicle's hull might be a bit better protected; however the sense behind such a decision would be questionable, given that no country in the region currently operates an infantry fighting vehicle or scout vehicle armed with a 35 mm or 40 mm gun - i.e. a higher level of ballistic protection would lead to no gain in actual protection.

The shape of the Carmel simulation might be result of reducing the AFV's thermal and radar signature
The side armor in the 3D renderings appears to be rather thin, probably being designed to resist smaller threats than the frontal armor. A common design choice for current APCs and IFVs is side protection against 14.5 mm AP(I) ammunition aswell as smaller EFPs (explosively formed penetrators), which are launched by certain types of anti-vehicle mines and EFP-IEDs.
Unlike other Israeli armored fighting vehicles (AFVs), the Carmel doesn't make use of explosive reactive armor (ERA) according to the simulation from Didi Ben-Yoash. Past Israeli combat vehicles such as the much heavier Namer APC, versions of the Sho't and Magach main battle tanks (MBTs) aswell as the Pereh anti-tank guided missile (ATGM) launcher vehicle were fitted with ERA. The latest version(s) of the Merkava 4 tank supposedly make use of hybrid armor, incorporating ERA layers inside it's relatively thick composite armor array.

The Namer APC (pictured) and the Merkava 4M tank are protected by the Trophy APS
Instead of using ERA, the Carmel will be relying only on active protection systems (APS) for protection against guided and unguided anti-tank weapons. Other than the Carmel utilizing both softkill and hardkill systems, no further details on the exact type of APS have yet been disclosed; there are however multiple local options. The Trophy APS from Rafael, adopted on the upgraded Merkava 4M MBT and the Namer APC, could be used on the Carmel; this would reduce costs and allow all three vehicles to utilize the same countermeasures, easing the logistic processes. A version of this systems suited for medium weight vehicles already exists in form of Trophy-MV, incorporating hardkill and softkill measures. However the Trophy APS should be considered a relatively "bad" APS, having several unique drawbacks in comparison with other active protections ystems.
Iron Fist, the active protection system developed by the company Israeli Military Industries (IMI), is a more capable option for the Carmel. Currently the Netherlands and the United States are testing this system for possible adoption on some of their AFVs. Iron First already integrates a limited amount of softkill measures (i.e. infrared jammers) and provides a higher short-time multi-hit capability (having usually four countermeasures ready compared to only one per flank in case of Trophy) with lower collateral damage (thanks to using HE blast grenades). A third option would be a combined development from Rafael and IMI, which supposedly is being worked on by the two companies on behalf of the IDF. Such a system might be able to combine the advantages of both APS types without including their drawbacks.

Even with APS, the Carmel will only be protected against small/medium calibre ammunition and shaped charge weapons such as rocket-propelled grenades (RPGs) and anti-tank guided missiles. Currently no APS is capable of dealing with large calibre kinetic energy penetrators (KEPs) such as APFSDS ammunition fired by main battle tanks and EFPs in such a way, that the relatively low amount of passive base armor of the Carmel would be capable of absoring the residual penetration of the KEP fragments.

A high level of protection against mines and improvised explosive devices (IEDs) is required to minimize casualties in the operational environment of the IDF. Heavier Israeli vehicles like the Merkava 4 tank and the Namer APC are fitted with thick add-on armor at the belly plate of the hull. Together with the v-shape of the hull bottom, these vehicles are believed to have a very high level of mine protection. It seems likely that the Carmel will also adopt a similar design; theoretically the anti-mine plating could be reduced to cover only the bottom of the crew compartment, a design used on some MRAPs (mine-resistant ambush protected) vehicles. This however would also increase the likelihood of a mission or mobility kill.
The Carmel has a front-mounted engine, which in some cases can improve the crew survivability against mines and IEDs. In particular when the detonation of the explosive charge is triggered by pressure or a trip wire, having the crew seated at the rear of the vehicle reduces lethality rates. However when the mines/IEDs are connected to a fuze triggered with a delay or by a thermal signature, the front-mounted engine might result in a higher probability of the explosive charge detonating below the crew compartment, increasing the probability of wounded crew members.

Iron Vision allows the crew to see through the armor by displaying images from externally mounted cameras
The vehicle is to be manned by a crew of two, but supposedly provides enough space for up to three men. The small crew size is possible, because the vehicle makes use of several new technologies in order to assist the operators; in some ways the crew only needs to monitor the vehicle. During the 1980s, 1990s and early 2000s, several countries inlcuding Germany, the United States and (Soviet-)Russia investigated two-men crews in their main battle tank (MBT) development programs. In general the conclusion was made that tanks (or tank-like combat vehicles) with a crew of only two men are possible, when using advanced optics, properly integrated C4ISR systems and components that allow automatic target recognition, target identification and aiming. Automated driving (potentially based on pre-designed routes using check points) is claimed to be a feature of the Carmel. The Iron Vision system from Elbit, often described as "see-through armor" based on an augmented/virtual reality head mounted display is expected to be fielded on the new vehicle.
A problem with reducing the crew size from four to two (or three) is that a lot of tasks aside of  operating the vehicle usually require additional workforce. Primarily having two soldiers for working on the tank is a problem when trying to repair the vehicle in combat conditions and when doing certain maintenance tasks. When having more crew members it is also possible (though not necessarily common) to specialize each soldier in a secondary skill: i.e. one man could receive an additional training in mechanics, one other soldier could be taught on fixing the electronics, while another crew member could learn how to properly threat some of the less common medical issues; reducing the crew also reduces the possibility of having the same amount of secondary skills.
It is possible to negate the impact of crew reductions by assigning more soldiers to one vehicle, increasing the support staff for the Carmel or by letting the vehicles operate in pairs, that are meant to help each other. How suitable these solutions are is a question that can only be answered after proper combat experience.

The unmanned turret used in the Carmel AFV simulation seems to be rather large
In the renderings from Ben-Yaosh's simulation, a relatively large unmanned turret is located ontop of the rear-most section of the Carmel's hull. This happens to be an unspecified type of turret; in reality a modified off-the-shelf design from IMI or Elbit Systems could be used on the Carmel in order to reduce costs. This however would most likely reduce the turret protection to STANAG 4569 level 4 at most, giving enemy IFVs the options to cause a mission kill or firepower kill.
The Carmel is said to be armed with a medium calibre autocannon with high elevation, and anti-tank guided missiles (ATGMs). The exact calibre of the gun has yet to be revealed, but it is expected to be within the range of 30 to 76 millimetres, speculations often speak of either a 40 mm or a 60 mm gun. The latter calibre was developed by Israeli Military Industries (IMI) together with the Italian company Oto-Melara. The cooperation of both companies lead to the Hyper-Velocity Medium Support Weapon (HVMS) gun, a 60 mm high-pressure gun capable of penetrating 120 mm steel armor at 60° at a distance of 2,000 metres when firing APFSDS ammunition. This is achieved by a rather high pressure of 427 MPa, compared to 350-370 MPa for 30 x 173 mm APFSDS rounds, 420 MPa for 35 x 228 mm AP(FSDS) rounds and ~400 MPa for ammunition fired by the 40 mm Bofors L70 gun. A problem of the HVMS gun is that it has lost it's biggest selling point - the ability to destroy main battle tanks (MBTs) with the introduction of heavier armored tanks. The high pressue is created by using a larger propellant charge, which negatively affects weight and size: the weight of 60 mm ammunition is between 6 to 7.2 kilograms, depending on ammo type; this compares to 750-860 grams for a single 30 x 173 mm round and ~2.5 kilograms for a 40 mm Bofors L70 HE round.

Having a larger calibre can lead to less stowed rounds, which will depending on scenario lead to less stowed kills. When engaging large groups of soldiers, a larger round is capable of injuring or killing more soldiers at the same time. When engaging lightly armored vehicles or smaller groups of soldiers outside the range of the coaxial armament (such as a two-men ATGM team), then a smaller calibre can provide the same lethaliy per round, while providing greater ammo stowage.
The Carmel is said to be specifically optimized for urban combat, which creates another set of operational requirements. If the main gun is not powerful enough to penetrate even thicker walls, then it is rather useless in urban combat; however if the ammunition has too much penetration power or too much explosive/fragmentation payload, then it increases the possibility of collateral damage by a large factor. Finding the right balance and the right ammunition mix seems to be extremely important; here programmable ammunition (requires at least 30 mm calibre for a decent payload) and ammunition with enhanced after-armor effects (provided by ammunition such as FAPDS, FAP, PELE-Pen) seem to be desirable.

The Swedish SEP featured a diesel electric drive system, partially housed on the sponsons
The Carmel is powered by a front-mounted engine; according to Israeli sources, this could potentially be a diesel electric drive system. Diesel-electric drives for armored fighting vehicles have been a topic of research and development since the 1980s, although the earliest proposals such as the Holt Gas-Electric Tank from 1918 "date all the way back". Diesel-electric drive systems are expected to provide a number of advantages such as greater flexibility when arranging the powerpack components inside the vehicle, higher reliability, reduced wear and purely electrical silent running ("sneaking") capability for a short period of time.
A problem of diesel-electric drives is the increased weight and volume compared to currently existing diesel engines; increasing the weight and volume relative to it's power output doesn't make much sense, when trying to make the AFVs like the Carmel lighter compared to existing vehicles. A slightly more conventional hybrid system - as used on the infamous civillian Toyota Prius or using a electric-mechanical drive system seems to be more benifical based on the current state of technology, although a conventional diesel engine might still provide most performance per weight and volume. However the Carmel still might be fitted with a diesel-electrical drive system for another reason: technology development. It's not very uncommon in the military to adopt new technology, that offers little to no advantages over existing solutions, just to fund the development of future, improved variants of the technology. A diesel-electric drive doesn't need to be better than existing diesel engines, if the military is convinced that it has the potential to become better in the future - something that is generally accepted. The M1 Abrams' AGT-1500C gas turbine is a prime example for such a choice; it wasn't better than other diesel offerings of it's time, but the Army (apparently falsely) believed that gas turbines were the future of ground combat vehicles. The German Puma IFV was designed specifically with the idea in mind to reuse new technologies in future AFVs.
The Carmel is expected to utilize rubber band tracks, potentially segmented ones, which would allow easier repairs and maintenance compared to the currently more common continous rubber band tracks.

The computer generated renderings from retired General Didi Ben-Yaosh show a vehicle with a rather bad shape of the frontal hull - the hull front is extruding more than a feet over the tracks. This would result in the vehicle having extremely poor off-road mobility: When driving down a hill, the overlapping hull front could touch the flat ground before the tracks (at the drive wheels in particular) reach it; the vehicle would get stuck in such a case. Likewise when trying to climb up a steep slope, the overlapping hull could touch the slope before the track section reaches the sloped ground.

Different Carmel variants
The renderings from the Carmel simulation also show a number of further vehicle variants, which have not been officially confirmed yet. If the exact type of other variants is speculation on the side of Mr. Ben-Yaosh or result of sources not available to the public (or atleast not available in English) is not known yet. In 2016 the European Security and Defence magazine mentioned only four overall Carmel versions (including the autocannon-armed fire support variant), which appear to be different from the ones shown in the renderings. The four other simulated Carmel variants are apparently a command and control vehicle (mobile command post), a mine-clearing vehicle similar to the US-American Assault Breacher Vehicle (ABV) fitted with rockets and a dozer blade, a scout and/or electronic warfare vehicle, and a further variant, which houses a large searchlight or laser effector, which might be used for CRAM (counter rocket, artillery and missiles) purposes.

More than two years ago, the author of this article suggest a somewhat similar vehicle, designed for urban combat and operated by a unit specialized in urban combat - there are specialized mountain infantry and coastal rangers in some militaries, so the latter suggestion seems reasonable. The idea was discussed in another forum, a blog post later meant to go online on this blog was (like so many other posts) started, but was never finished. Main battle tanks are not capable of dealing with all issues of modern combat, being too heavy for many cities and thus being incapable of crossing older bridges or driving in areas with tunnels/subways. All current tanks are also lacking the gun elevation, some also the roof armor, to fight in cities with larger buildings, which would allow enemies to target the vehicles from above. The lack of scalability of tank ammunition in urban combat seems to be a further issue, just like the huge physicial size of a proper MBT. While the Carmel seems to be a step forward, it appears still to be less than ideal based on the available news reports and the simulation from former Brigadier General Ben-Yoash.
This might mean that the Russian BMPT - being operated by Kazakhstan only - might still be the best urban combat fire support vehicle, even after the Carmel entered service.