Wednesday, September 20, 2017

Czech Army prefers Puma, searches T-72 replacement and miscellaneous

In August an article on the Czech IFV program was published here. A long period of writing and more recent news from the Czech Republic have made the speculation and information on the possible contenders outdated. The Czech government asked a total of nine contenders to participate in the tender for the BMP-2 replacement. Apparently neither the Šakal IFV or the Wolfdog were considered by the army as proper replacement for the BMP-2s. The following IFVs were seen as possible replacement, which is why the manufacturers were invited to participate in the bidding process for the contract:
  1. BAE System's CV90
  2. General Dynamics European Land Systems' (GDELS) ASCOD 2
  3. The Puma from PSM, a joint venture between KMW and Rheinmetall
  4. Rheinmetall's Lynx
  5. The PMMC G5 from the German manufacturer FFG
  6. Otokar's Tulpar
  7. The Kaplan-20 from FNSS (FNSS is a joint-venture by BAE Systems and Nurol Holding)
  8. The Namer developed by the Israeli Ordnance Corps
  9. Oto-Melara's Dardo
The Italian and Israeli companies did not respond to the Czech request - or at least not until the deadline was over. It must be noted that both the Dardo infantry fighting vehicle (IFV) and an IFV variant of the Namer probably would have lost due to their performance characteristics not matching the standards set by the competitors. By current standards, the Dardo has poor armor, lacking firepower - only a 25 mm chaingun plus outdated TOW missiles - and lower mobility than the other options, while the Namer is too heavy and is fitted with an outdated powerpack, that delivers not enough horsepowers while consuming more fuel than more recently developed diesel engines. The fact that air-transportability and the compability with existing infrastructure might be factors for the purchase of a new IFV makes the Namer a very unattractive option.

The Namer was recently showcased with a new unmanned turret
It also should be noted that at the time of the tender request, the latest version of the Namer fitted with an unmanned turret had not been presented. At that time the only available infantry fighting vehicle configuration of the Namer was limited to a few prototype vehicles fitted with the Samson Mk 1 remote weapon station (RWS). This RWS is also used on the Czech Pandur IIs and features a 30 mm Bushmaster II autocannon, a machine gun (MG) and a launcher for two Spike-LR anti-tank guided missiles (ATGMs). Using this RWS instead of a proper unmanned turret has one major drawback: it is essentially unarmored and can in worst case be disabled by machine gun fire, because the ammunition feed system and parts of the electronics are not covered by any sort of armor.
On the first of August the IDF presented a new IFV version of the Namer fitted with an unmanned turret specifically made for the vehicle. This infantry fighting vehicle would have been far better, but probably was still in development at the time of the request. The turret is not an off-the-shelf option from Elbit Systems or Rafael, but incorporates technologies from multiple companies and is designed by the IDF. It features two set of Elbit System's COAPS sights, the Trophy-MV active protection system from Rafael - a lighter variant of the Merkava's APS known as Trophy-2 during the development - and a relatively wide variety of armament, consisting of a 30 mm Bushmaster II chaingun, a coaxial machine gun, a pop-up ATGM launcher and an internally mounted 60 mm mortar.

The G5 PMMC was rejected by the Czech Republic
Based on the technical specifications of the vehicles, the G5 protected mission module carrier (PMMC) was eliminated before the actual testing of the offers started. It's technical characteristics - the low supported maximum weight of only 26.5 metric tons, the small 560 hp engine and the limited protection options - were too much to be compensated by the lower price point. FNSS' Kaplan-20 "new generation" armored fighting vehicle (NG-AFV) suffered from the same issues, but it also came with a big pile of potential political troubles due to the relations between the EU and Turkey being on a historically low level. Based on the latter factor, the Tulpar IFV from Otokar, which based on weight, armament and protection level might have been considered a serious alternative to the offerings from the established manufacturers, was eliminated together with the Kaplan-20 from the Czech tender.

A Puma IFV climbs a slope during the Czech trials
This meant that only four vehicles - the ASCOD 2, the CV9030 (in two variants), the Puma and the Lynx - remain in the competition. These four vehicles were tested during a longer period of time in the Libava military facility in the Czech Republic. The trials lasted a total of six weeks and included firing trials, high speed driving on roads, traveling cross-country, climbing over walls/barriers, crossing ditches, wading through deep bodies of water and other tests. The first set of static and dynamic firing trials was done against targets in a distance of 700 m, 1,200 m and 1,800 m. An exact list of tests has not been published yet. The performance data of the vehicles was gathered before proper requirements were issued by the Czech ministry of defence, which is a rather uncommon approach.
According to Czech sources, the German Puma IFV indirectly won the evaluation of the Czech Army. While at the time of testing no official requirements were released - a suggestion for possible requirements was scheduled too be send by the army to the Czech ministry of defence (MoD) at the end of August - the Puma proved its "technological dominance" as described by a the Czech website Armádní Noviny. What exactly is meant with this statement is not exactly clear, aside of the Puma apparently outperforming the other contenders. As stated by German sources, the Puma IFV managed to hit "by far" the highest number of targets during the firing trials. It seems likely that the superior level of protection of the Puma is also part of this "dominance", but it is possible that the high power-to-weight ratio in combination with the advanced hydropneumatic suspension allowed the Puma to outrun the competition during some of the mobility trials - in tests by the engine manufacturer MTU, the Puma outrun a Leopard 2 tank.

Puma IFV wading through water as part of the trials
Regardless of what the exact reasons for the Puma outperforming the other vehicles were, the Czech MoD has stated interest in buying this infantry fighting vehicle rather than one of the cheaper offerings, according to Czech websites Armádní Noviny and E15.cz. The Puma is the favored solution, but due to its high unit costs a vehicle with rubber band tracks is also considered as option; given that all three other vehicles - ASCOD 2, CV90 and Lynx - were presented with rubber band tracks, it is not clear what other IFV is meant - in theory one could also create a lighter variant of the Puma with rubber band tracks. A first meeeting was held between the German PSM and the Czech state-owned company VOP CZ to discuss details on a possible Puma purchase. VOP CZ had made agreements with all of the four final bidding companies for a possible deal regarding local assembly and production of components. Aside of PSM, the companies KMW, Rheinmetall, Hensoldt Optronics, MTU Friedrichshafen, Jenoptik Advanced Systems and Dynamit Nobel Defence were also taking part in the talks. PSM supposedly already showed technical documents regarding possible non-IFV variants of the Puma suited for the Czech Army.
The Czech  MoD has allocated a budget of up to 50 billions koruna (€1.916 billion) for the purchase of 210 new IFVs and other vehicle variants based on the same chassis with an option to later order a further 100 vehicles. This would be enough to buy 210 Puma IFVs for the cited unit price, about €7 million according to the Czech sources, but only half the bugdet is actually meant to be used on purchasing the new vehicles. The other half of the budget is meant for logistics, infrastrucutre and training, i.e.it is meant for purchasing spare parts and simulators, setting up training facilities and repair plants. This means currently the Puma is too expensive!

Puma production line in Germany
In order to deal with the high unit costs, different possibilities are examined. PSM is offering to set up a full production line in the Czech Republic, which would reduce costs (e.g. the wages in Germany are on average more than 3.5 times as large as the ones of Czech workes) and would create jobs, resulting in people paying more taxes in the Czech Republic and thus indirectly reducing costs further. All Puma IFVs for the Czech Army could be made within the Czech Republic and if desired even some of the components for the German Army vehicles could be manufactured there - currently some of the cables and sensors for the fire supression system are made in this country already.
Alternatively there is an option of getting financial support for the arms purchase thanks to the new EU Defence Fund, which were created in 2017 after first plans were made a year before. This fund has an annual size of up to €5.5 billion and can be used for research and development, aswell as arms acquisition; EU member countries can request support and submit a project, which then might receive additional money from the fund. Based on speculations on Czech-language websites, it seems that this money can only be spent on equipment from European companies - but all four companies (even GDELS in Madird) - have their headquarters in EU countries.
Last but not least, there are suggestions for buying two different vehicles at once: the Puma would then serve as IFV only, while according to E15.cz either the ASCOD 2 or the Lynx would be used for the support vehicle roles, eg. as an armored ambulance vehicle (MedEvac), as a command post vehicle, as a reconnaissance vehicle and as an armored recovery vehicle (ARV). The drawback of this approach would be the added logistics, infrastucture and training necessary for operating two new vehicle types.

3D model of the Puma's turret with MELLS launcher
In theory would be possible to make all vehicles in Germany, because the initial order for the German Army will be finished in 2020, the same year when the production for the new Czech infantry fighting vehicle is planned to start; by 2024 all new Czech IFVs should be finished according to the army's demands. In such a case the German production lines would never be closed and just continue making the hypothetical Czech Puma model, which is expected to feature several modifications compared to the German varaint (such as local radio units, a machine gun already in use with the Czech Army and other minor differences at least).
While the German Army is expected to place an order for a second batch of Puma IFVs, there is currently no projected schedule for this to happen. The German federal audit office has recommended to wait until the vehicles meet all of the original user requirements, of which many still have to be met - such as the integration of the MELLS Spike-LR launcher and TSWA secondary weapon, which has recently been contracted. Until the second batch is finished, the Marder will continue to soldier on in the German Army side-by-side with the Puma. Therefore up to 200 Marder IFVs will be upgraded with a new night vision system for the driver, a third generation ATTICA thermal imager and a variant of the MELLS launcher for the Spike-LR ATGM.

The Lynx in an IFV version in the Libava military facility
Not mentioned by E15.cz as a possible secondary vehicle to serve alongside the Puma is BAE System's CV90 family of vehicles. In a previous post, we mentioned that this vehicle offers less payload in terms of supported weight and internal volume compared to the other options, which might be the reason for not considering the CV90 as platform. Alternatively it might be related to the procurement costs; while originally designed to be cheap and reliable - the key factors that lead to its widespread adoption, the each successive version of the CV90 became more expensive after adding more technology.
A further aspect speaking against the CV90 might be the lower involvment of the local industry. While always looking for local partners, BAE Systems had kept the production of the hull in its own facilities; only the turret and several sub-components can be made by the industry in the user's country. 

The hulls of all exported CV90s were made by BAE Systems
It is worth mentioning that the CV90 is a great vehicle, but its main advantage doesn't seem to be superior performance. The fact that is has been adopted in so many different countries shows the adaptability of the design, the many different versions also show that an evolution of the concept was possible. The CV90 started its success during a time, when all major Western militaries already had designed and adpoted their infantry fighting vehicles a decade before, thus not offering new high-end solutions too compete against the CV90 on the international market. Vehicles purely meant for export, such as the Panzer unter minimalem Aufwand created by Krauss-Maffei in the 1980s, the TH-495 from Thyssen-Henschel, various main battle tanks from Vickers (Vickers Valiant, Vickers Mk 7) and the GIAT (AMX-32 and AMX-40), have a tendency of not being purchased due to potential issues with logistics, training and the availability of spare parts.
Given the military cooperation between some of the user countries of the CV90, the purchase was to some extend an avalanche - one country choosing to adopt the CV90 resulted in the vehicle having an advantage in the next trials.

Swiss CV9030CH infantry fighting vehicles without applique armor
The CV90 was chosen Switzerland after a total of eight vehicles was considered for the Schützenpanzer 2000 program, three of which - the CV9030, the Marder M12 and the Warrior 2000 - were tested during a period of six weeks in the Alpine country. The Marder M12 was an upgrade to the German Marder IFV, based on a refurbished Marder 1A3 chassis fitted with the E4 turret from KUKA.While achieving a high level of protection and featuring an excellent turret, this offer suffered from the old hull not being upgraded otherwise - the relatively primitive protection solution - spaced steel armor - resulted in a weight of 34.1 metric tons - too much for the original powerpack to keep up with the Leopard 2 (a key requirement from the Swiss Army). A Marder M12 with more powerful engine and/or more weight efficient ceramic armor would have been a better option.

CV90, Warrior 2000 and Marder M12 in the Switzerland
The CV90's hull was received with mixed feelings, some aspects were considered positive, while others were seen negatively. The small hull size was considered as advantageous for survivability - a low profile is less likely to be spotted and less likely to be hit. Also the separation of fuel from the crew compartment, not found on the other offers, and the easy to adapt add-on armor was seen as an advantage of the CV9030. This add-on armor consisted of MEXAS (ceramic) composite modules with a thickness of up to 70 mm (depending on location) and could be mounted within a few hours. Last but not least the running gear with seven roadwheel pairs (instead of six) proved to provide better in deep snow.
The small size of the hull however meant that the vehicle was cramped and ergonomics were poor compared to the Marder and Warrior variants.
The turret of the CV9030 was however the worst one offered, resulting in lower than average firepower. The problems were mostly related to ergonomics and the fire control system (FCS), which wasn't fully digitized. The FCS did not include an independent optic for the commander or a proper auxiliary sight, while relying on a single, outdated first generation thermal imager for night vision.

The Warrior 2000 IFV featured a redesigned hull mated with a turret manufactured by Delco
The Warrior 2000 performed best in the Swedish trials. Its turret - delivered by the US company Delco - was the most advanced turret on offer. Not only featuring modern sights for both commander and gunner, it also included advanced software functions such as fully automatic target tracking. The basic structure of hull and turret of the 31 tons heavy vehicle was made of aluminium, resulting in a relatively light weight given its size. Additional spaced armor - possibly simple steel - is bolted ontop of the aluminium construction for an increased level of protection. The Warrior 2000's larger size resulted in the best ergonomics of all tested vehicles.
Being a new vehicle design - based only to a very limited extend on the British Warrior IFV - the Warrior 2000 suffered from some teething issues which negatively affected the reliability of the vehicle. The manufacturer of the most advanced IFV offered to Switzerland - the British company GKN - told the Swiss Army that all these issues could be fixed, but sold its defence subsidiaries to Alvis plc, the same company that owned the CV90-maker Hägglunds and later became part of BAE Systems. Alvis plc had not much motiviation to keep two different product lines for the IFV market, which ultimately resulted in the end of the Warrior 2000.

The Swiss Army opted for the CV9030 because it offered the best price-to-performance ratio, not because it was the most capable vehicle! Unsatisfied with the original CV9030 tested by the military, a number of changes were demanded before purchasing the CV9030CH. The original engine was replaced by a larger 670 hp Scania engine meeting the Euro II emission standard for trucks, while the hull was enlarged: the hull roof at the dismount compartment was raised by 100 mm, while the vehicle was also stretched by 200 mm in order to reduce the issues with ergonomics. The rear doors were replaced by a single rear ramp for easier entry and exiting of the vehicle by the infantry squad. A second-generation thermal imager was installed into the gunner's sight instead of the outdated previous model. The FCS' computer system was exchanged and local equipment (machine guns, radios, smoke grenade launchers) were fitted to the IFV. Only forty armor kits were purchased, leaving the majority of the vehicles unprotected against medium calibre ammunition.
Further changes were planned - such as adopting a separate optic for the commander for hunter-killer capability - but deemed to be too expensive.

In 2002, Germany tested an ímproved variant of the Swiss CV9030CH, which was fitted with a more extensive applique armor kit including a mine protection plate. Germany had halted the development of the next-generation NGP vehicle family due to the recent developments in assymetric warfare and international peace-keeping/peace-making operations. The NGP was too heavy for air-lifting, being designed with a weight ranging from 51 metric tons (in the base configuration) up to 77 metric tons with a full armor kit.
Several options were evaluated, but in the end the CV9030 was rejected, ending up on the last place of all tested vehicles! The German Army considered the poor protection against anti-vehicle mines, the high weight in relation to its protection level and the low growth potential of the chassis to be key factors speaking against buying the CV90. Because none of the vehicles met the German requirements, the Neuer Schützenpanzer project was started, which reused some of the technologies and concepts of the NGP; later it was renamed multiple times - Panther, Igel and finally Puma.

The CV90 offered for the Scout-SV program
Likewise the UK tested a variant of the CV90 for the Scout Specialist Vehicle (Scout-SV) program, which itself was part of the FRES project of the British Army. BAE Systems decided to reduce the overall size of the CV90 for the Scout-SV offer in order to implement a higher level of protection. According to claims from the manufacurer, this variant of the CV90 met the British protection requirements and had a level of mine protection "equivalent to a MBT". The United Kingdom prefered to buy a number of variants of the ASCOD 2 from GDELS, despite BAE Systems being a local company - the  larger size and greater payload of the resulting vehicle being a key factor.

Why this short recapitulation of the times the CV90 was not chosen? Because its widespread adoption makes some people believe that the vehicle is inherently superior to all other options and buying something else must be related to lies and corruption. BAE Systems created a number of presentations - both in the Czech and in the English language - on the development of the CV90, its advantages and why the Czech Army should buy it instead of the other vehicles. These presentations were available in BAE Systems' online resource center, but after they have been posted in multiple forums, BAE Systems added a password protection for these files. They might not have been meant to be available for the public.

According to the documents, the fifth-generation of the CV90 is protected according to STANAG 4569 level 6 (30 mm APFSDS from 500 metres distance) ballistically and has mine protection meeting the STANAG 4569 level 4a/4b standard - a 10 kg TNT charge located under the track or the hull; this is currently the highest standardized level of mine and ballistic protection. Protection against shaped charges such as RPGs, additional roof armor aswell as active protection systems are available, but not fitted to the CV9030CZ in the Czech trials. 
According to the documents from BAE Systems - the manufacturer of the CV90 - the older versions of the vehicle provide ballistic protection equivalent to STANAG 4569 level 5 "plus" or "plus-plus", while the CV90 Mk III is the only older variant with mine protection, reaching the STANAG 4569 level 3a/3b - this is an expected level of mine protection for such a vehicle, it's the same level of mine protection achieved on the Marder 1A5 IFV and believed to be also equivalent to the that of the Bradley with the BUSK. 
While not related to the Czech IFV procurement plans, the problem remains that there is no official, standardized data for the protection levels "level 5+" and "level 5++". All that is confirmed, is that the ballistic protection requirements for STANAG 4569 level 5 are met and exceeded. A further problem is that there are different volumes of STANAG 4569  and the corresponding AEP-55 standard for the testing procedures. The earliest edition of STANAG 4569 required only protectiton against APDS in order to reach the level 5 of ballistic protection and didn't feature a level 6. The later revisions require protection against APFSDS ammo aswell. So what does "level 5+" and "level 5++" mean? Does it relate to a requirement for protection against 25 mm APFSDS ammo, because the updated standard didn't exist back then? Does it relate to a requirement for protecting against 30 mm APDS ammo or APFSDS ammunition? What exact 30 mm calibre would that be -  30 x 165 mm, 30 x 170 mm or 30 x 173 mm APFSDS? What is the range and the impact angle? Is the STANAG 4569 level 6 simply not mentioned, because it didn't exist at the time these vehicles were designed?

STANAG AEP-55 required armor coverage by protection level
One example of a vehicle exceeding STANAG 4569 level 5, but failing too reach the level 6 requirements for ballistic protection is the Austrian Ulan IFV, a version of the ASCOD with MEXAS applique armor. This vehicle is protected against 30 mm APFSDS of unknown type fired from a distance of 1,000 metres along the frontal 30° degree arc - so essentially +15° and -15° from the vehicle's centerline. While in this case the difference in frontal protection might not be very much, the difference in required side armor is much bigger. Modern 30 x 173 mm APFSDS rounds from manufacturers such as Nammo and Rheinmetall can perforate in excess of 110 mm steel armor at 1,000 metres distance, the estimated penetration at 500 metres would be somewhere in the range of 120-130 mm steel armor. A 29 mm steel plate is enough side armor to stop a 30 x 173 mm APFSDS at a range of 1,000 metres and an impact angle of 15° - effective plate thickness will nearly quadruple at this angle. STANAG 4569 level 6 requires however protection against a 30 x 173 mm APFSDS at at a range of 500 metres and an impact angle of up to 30° - therefore one needs at least a ~60-65 mm thick steel plate or more than twice as much side armor to meet the NATO STANAG requirements! In the end both BAE Systems and the Norwegian Army claim that the latest Norwegian model - on which the CV9030CZ is based - features upgraded armor protection over previously existing CV90 variants and has the highest level of protection of the vehicle versions. Photographs of the fifth generation CV90 and previous models show increased armor thickness - at least at certain places.

The T-72M4Cz is due to be replaced by a new tank
The new Czech IFV is to be manufactured in the timeframe from 2020 to 2025 - in this period of time, the Czech military also plans to replace the T-72M4Cz, probably the most capable T-72 upgrade operational within NATO, with a more capable solution in reponse to the latest Russian tank developments. According to Czech-language sources, there are only two real contenders: the Leopard 2 and the Israeli Sabra tank. The M1A2 Abrams, the South-Korean K2 Black Panther and the Japanese Type 10 main battle tank (MBT) are all in production, but too expensive - the Abrams consumes too much fuel and spare parts, while the huge physicial distance to the Asian countries would negatively affect the price of spare parts and training exchanges. The Italian C1 Ariete, British Challenger 2 and French Leclerc tanks are all out-of-production and made in very limited quantities only.
 
New build Leopard 2 tanks are likely too expensive for the Czech Republic
 The Leopard 2 should be considered the favorite option for a new MBT. The tank is in widespread use and a large number of companies - such as KMW, Rheinmetall, RUAG and Turkish Aselsan - are offering different types of vehicle upgrades. The Leopard 2 has access to various types of technology and can be offered with a number of unique advantages over the Sabra and other existing tanks, such as a long-barreled L55 smoothbore gun from Rheinmetall. With three out of the four neighbour countries operating the Leopard 2, adopting the Leopard 2 MBT would be advantageous for logistics.
However there is a big problem with funding the purchase of Leopard 2 tanks; buying completely new tanks is too expensive. But even buying older tanks and upgrading them to a decent configuration - a 1980s Leopard 2A4 will provide no real performance boost over the T-72M4Cz - might be rather costly. Czech sources speculate about using the EU Defence Fund for purchasing the tanks.
Only about a hundred tanks in a decent condition are left on the market, but aside of the Czech Republic, the militaries of Bulgaria, Croatia and Poland are interested in buying them.This could result in a bidding war, driving prices higher. Alternatively it could be possible to lease Leopard 2 tanks from another European country, but the question remains from whom the tanks would be leased. The neighbours Germany and Poland are increasing their tank fleets, thus unlikely to hand over tanks to the Czech Army.

The M60T is based on the Israeli Sabra upgrade
The Israeli industry was expected to offer the modern Merkava 4 tank, but decided - after investigating the Czech requirements and operational environments - too offer only the Sabra tank, supposedly in its latest version. The Sabra tank is an upgrade of the obsolete M60 tank, which has been adopted in Turkey as the M60T. It must be noted that while the Merkava is only operational in Israel, it has been offered to multiple other countries in the past decades, including Switzerland (early variant - either the Merkava 1 or 2) and Sweden (Merkava 3 during the 1990s); Sweden had very good relations with Israel, sharing tank technology in some cases; e.g. a Swedish delegation was insturcted on the modular armor concept of the Merkava 3, but the tank was still rejected for not being competitive compared to the European and US offers.
The Sabra is a cheaper option compared to the Leopard 2, which might provide beneficial. However due to the fact that it is made by Israeli companies, it might not be possible to use EU money from the defence fund for purchasing the tanks. Depending on variant, the Sabra can be better than the Leopard 2 - at least the old 1980s models without extensive upgrades - in terms of firepower and potentially also in regards to armor protection. It is unlikely that the Sabra can compete with more modern Leopard 2 versions in regards to performance in any important category. The upgraded M60 main battle tank is protected by hybrid armor - a combination of explosive reactive armor and passive composite armor - and sometimes also by the Iron Fist hardkill active protection system from Israeli Military Industries (IMI). The gun is replaced with a 120 mm smoothbore gun, while the Knight III fire control system from Elbit Systems allows the vehicle to be used at night, fire on the move and operate in a hunter-killer configuration. The latest version of the Sabra - the Sabra 3 - is supposedly  fitted with armor derived from the armor modules fitted to the latest variants of the the Merkava series.

The choice of the M60 as base for the Sabra upgrade is questionable. On one hand, the M60 tank is widespread and rather cheap - that's good; on the other hand however the M60 is probably one of the worst tanks for upgrading: it is already rather heavy thanks to the use of thick, but weight-inefficient steel armor, and it is one of the tallest main battle tanks, therefore installing applique armor yields less gain in protection. The tank also lacks proper compartmentation, storing the ammo inside the crew compartment without blow-off panels. The mobility of the Sabra tank is worse than that of a Leopard 2 or other modern MBT due to its poor suspension and small 1,000 hp engine, which isn't really enough for a 60 ton tank.

A light tank variant of the ASCOD 2 offered by GDELS

A further option that is being considered by the Czech Army is buying a light/medium tank based on an IFV chassis. The CV90105 and CV90120-T are well known examples of such vehicles, but there also have been different light tank variants of the ASCOD design. The Lynx could be used as a medium tank according to Rheinmetall representatives and as demonstrated by various Marder light/medium tank projects - the Marder medium tank offered to Indonesia is a prime example. Retired US Colonel MacGregor is suggesting a medium tank variant of the Puma (or an equivalent IFV) for his concept of a Reconnaissance Strike Group; he claims that the possibility of creating a Puma armed with 120 mm smoothbore gun was confirmed by the manufacturers.
The big problem is that such a light/medium tank is not a one-to-one role replacement of the T-72M4Cz; none of these vehicles has enough frontal armor to withstand impacts of large calibre APFSDS ammunition or tandem charge ATGM warheads. In so far buying such a vehicle requires changes in the training and doctrine.


Meanwhile news websites have reported more on the Polish IFV project, after various options were showcased at the MSPO 2017. According to Jane's IHS, the basic steel hull of the Borsuk IFV offers ballistic protection according to STANAG 4569 level 2 only - so essentially the same level of armor protection as the old BMP-1, that is meant to be replaced by the Borsuk. When fitted with ceramic or composite armor modules, the hull protection is boosted to level 4 ballistic protection - which is given the weight of about 30 metric tons a rather unimpressive - some 20 tons vehicle reach this level of protection, but the focus on IED/mine protection and amphibious requirements take their toll from the Borsuk's design. The Borsuk and the older Anders IFV both are fitted with hydropneumatic suspensions based on the hydrops from the British company Horstman. 
While being developed following a contract of the Polish Army, it is not decided that the Borsuk will actually enter service, which is why the Anders, the ASCOD 2, CV90 and Lynx are apparently all also offered to the Polish military.

14 comments:

  1. I found a mistake in your article:
    "STANAG 4569 level 6 requires however protection against a 30 x 173 mm APFSDS at at a range of 5000 metres and an impact angle of 30°"
    should be "......500 metres and impact angle of 30° frontal arc to centreline, ± 30° sides included..."

    ReplyDelete
  2. I agree with the undertone of the article that there are not inexpensive ways to do much better than a highly upgraded T-72. Well, maybe if Germany or the Netherlands was offloading Leopard 2's at bizarrely cheap prices.

    Maybe you could write a short article on the T-72M4Cz and how it compares to Soviet, Israeli and NATO tanks of the 1980s and their modern versions? Also, the British are eliminating one active duty tank regiment as part of Army 2020 Refine so maybe the Czech Republic could look into used Challenger 2's?

    ReplyDelete
    Replies
    1. This comment has been removed by the author.

      Delete
    2. T-72M4Cz is probably the worst T-72 modernization. great example how to fuck up the whole process. All this money(originally 3,7 mln USD for 350 tanks, which ultimately rised to 5,2 for 35 tanks, in prices from 2000's!) for new high-tech FCS with HK, and accuracy while on the move is still just like in the T-72M1, because they didn't change old main gun and stabilizer due to too big costs(sic!) Compare it with the T-72B3 cost, which I think is the best example of T-72 MLU(even better than PT-91M "Malaj"), which is about 2 mln USD. However it should be pointed that:
      - price does not include renovation cost, because tanks before MLU were "brand new", straight from
      mobilization storages
      - profit margin was very low(3-4%), imagine that in EU
      - purchasing power of the dollar is higher in Russia than in the western countries
      - the order was on 600 vehicles
      But still...
      For today the only option for ACR is another T-72 MLU. But This time it would be easier because M4Cz need only new gun and stabilizer. Both are off the shelf products offered by Ukraine(gun stabilizer), and Slovakia(gun). But this is still just a stop gap measure.
      So my proposition for new Czech MBT would be medium tank a'la CV90120, Anders etc. It's of course not a proper tank, but I don't think the ACR really need one. Fire support for mech infantry doesn't require complicate and expensive MBT. Smaller, lighter vehicle would be sufficient in this role. Also cheaper to buy and especially to maintain, due to same chassis as IFV.
      Western propositions like L2, M1 not mentioning Leocler, FT or MGCS in my opinion would be too expensive and complicated for the job(basicly fire support for mech. infantry). Maybe some "monkey version";), or in cooperation with Poland and maybe with other countries(Bulgaria, Hungary?), because we also need new MBT in next 10-15 years. Will see.

      Delete
    3. It seems like light tanks aren't a thing anymore and even medium tanks are quite risky considering modern threats. Some people feel like a 35-40mm gun IFV would be safer for the future but given the turret vulnerability on both sides it might not change much. I was thinking about the supposed superior protection of Pumas and if they could produce a smaller number of light/medium tanks (around 45 tons) that could survive as much as similar tanks. Without that I wouldn’t feel good sending them on missions and look for actual tanks instead.

      The Israeli seem to want to get rid of Sabras which are probably too heavy for our use anyway. Depending on how bad the state of our un-upgraded T-72s is it might make sense to work with Ukraine on a stopgap solution. The offer of Pumas seems to be too good to be true (a lot of local production supposedly making it cheaper that the “market value”). I can’t find much info about the Lynx which seems like a better value for money for us. Maybe it’s that the Pumas come with a better offer of local production than the Lynx? But if, IF a production line set up here, without the usual corner-cutting etc., then maybe that would make it possible for us to prepare for the next wave of tanks . Lot of maybes…

      Delete
  3. You mentioned that the CV90 was cramped and had poor ergonomics, does this refer to the entire vehicle, or the troop compartment?

    I also found it funny how during the development, a door set up was found the be the best for a quick dismount, and now a ramp is found to be better.

    ReplyDelete
    Replies
    1. This comment has been removed by the author.

      Delete
  4. The Namer was made with provisions for mounting the MTU883 engine, so the offer could be split to have both SIBAT (Israel's defense export agency) and MTU or GD. But the AVDS engine is still a very attractive option due to its very low price.

    ReplyDelete
  5. Could not one of the Polish upgrade kits be an attractive alternative for the CZ T-72's?

    ReplyDelete
    Replies
    1. This comment has been removed by the author.

      Delete
    2. Not really. PT-91 "Malaj" and M2 aren't real progress towards M4Cz. While PT-17 is just a scam.
      The Czechs only needs to replace the old gun, old gun stabilizer plus some other small things like APU etc. And that's it.

      "Another thought on the T-72 issue: would it be possible to replace the turret with a large caliber autocannon in a RWS? Something like this but with ATGMs for engaging MBTs."
      What for?

      Delete
  6. Another thought on the T-72 issue: would it be possible to replace the turret with a large caliber autocannon in a RWS? Something like this but with ATGMs for engaging MBTs.

    Without the weight of the turret there should be plenty of suspension and horsepower to uparmor the hull.

    ReplyDelete
  7. What comes to mind:
    The replacement date for a new mbt of 2025 might be not the best decission. At least Germany and the UK, followed by france ( probably a decade later?) are looking for a replacement for their old fleets in the early 2030`s. Of course the Pricetag will be to high for Cz, but a new batch of Leo 2 (probably at first A5 and A6 models) will be on the market which already includes some of the most expensive upgrades compared to the A4s. The pricetag for a neighbouring NATO country will probably be on black friday level.
    The Challenger 2 will probably preplaced in the foreseeable futre, too. But since this has something to do with certain limited upgrade capabilities, it`s questionable if this solution would be wise. Going back from a 125mm smoothbore to a 120mm Rifled gun is not really what "progress" means. Maybe there will be "priceeffective" solutions for Challenger hulls and third party developed turrets, who knows.
    These things kept in mind: A lifetime extension Programme which aims on 5+ years should be at least considered. Maybe the upgrade costs will amortise through lower aquisition costs.

    ReplyDelete